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1 First Half

1.1 Existence of primes using Zorns Lemma

We take the set of ideals fI ( Rg then for some chain fIig we have the upper
bound

S
Ii this is an ideal since each Ii is. So by Zorn there is a maximal ideal.

Maximal implies prime is trivial since for ab 2 m; a; b =2 m then m + (a) =

m+ (b) = R so R = (m+ (a))(m+ (b)) = m2 + am+ bm+ (ab) � m so m = R

1.2 Characterisation
p
I =

T
I�p p

For simplicity we look at the case of the nilradical since xn 2 I () �xn = 0

mod I. So by the correspondance theorem since
p
I;
T
I�p p are both ideals over

I they are equal if and only if they are equal under the quotient. So this falls
to showing p

0 =
\

p2specR=I

p

So for any nilpotent f . We have that f 2 p since fn = 0 mod p. So f is in the
intersection. Then for f non nilpotent we take the set of ideals

� = fJ � R=Ijf =2
p
Jg

Clearly this is nonempty since f =2 p0. So we have a maximal element say P .
We then show that P is prime so f is’nt in the intersection. This argument
generalises to finding primes disjoint from any multiplicitively closed set
We do the standard argument. Take ab 2 P; a; b =2 P then fn 2 P + (a); fm 2
P + b so fm+n 2 (P +(a))(P +(b)) = P 2+aP + bP +(ab) � P so P =2 � which
is a contradiction so P must’ve been prime
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1.3 Krull Dimension of a ring and height of a prime ideal

For a ring the Krull Dimension dim(R) is defined as the the largest n so that
there is a strict chain of prime ideals

p0 ( ::: ( pn

We then define the height of a prime q as the largest length of chain

p0 ( ::: ( pn = q

Which by the standard correspondance is just dim(Rp)

1.4 Localisation S
�1
R and S

�1
M , its kernel and exactness

properties

For a multiplicatively closed set S � R we define the localisation of M at S as

S�1M =
na
b
ja 2M; b 2 S

o
= �

Where x=y � a=b () 9s 2 S; s(bx�ay) = 0. We define Mp for a prime ideal
as (R n p)�1M . This is clearly a multiplicitive set since ab 2 p () a; b 2 p

and we take the negation of this. Clearly for M finitely generated. S�1M =

0 () 9s 2 S where s 2 ann(M = (m1:::mk)) since mi=y � 0=1 so simi = 0

then
Q
si 2 ann(M). The other direction is trivial. As sx = 0 so x=y � 0=1

Clearly we can extend this construction to a functor, R�mod! S�1R�mod

by sending a map ' to the map S�1' : m=s 7! '(m)=s. This functor is exact
since if we take the exact sequence

N M Qi p

Then under S�1� we have that the sequence

S�1N S�1M S�1QS�1i S�1p

Clearly this satisfies imS�1i � kerS�1p by functoriality (this is equivalent
to saying that the composition factors through the zero map which it does
since it did in R �Mod and S�10 = 0). Then for m=s 2 kerS�1p we have
that p(m)=s = 0=1 so ~sp(m) = 0 but in S�1R ~s is a unit so p(m) = 0 so
imS�1i = kerS�1p so we maintain exactness as a corroloary we see that this
functor preserves quotients in particular by applying this to the exact sequence

0 N M M=N 0i p
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1.5 Local Ring, Nakayama’s Lemma (the easy proof)

A local ring (A;m) is a ring with a unique maximal ideal.

Theorem 1.1 (Nakayama’s Lemma). For an ideal I � R, M finitely gener-
ated. If IM = M then there exists r 2 R, r = 1 mod I such that rM = 0

In particular in a local ring mM = M =) rM = 0 but since r = 1

mod m it is a unit so M = 0. If we replace r with r � 1 we get the mneumonic
IM = M =) im = m. Additionally it lets us lift generating sets

Lemma 1.2. If ~m1::: ~mk generate the A=m vector space M=mM then m1:::mk

generate M

This just follows from the fact that taking N = (m1:::mk) then x 2M;x =

x0+
P

aimi = my0+
P

aimi so M=N � mM=N so mM=N = M=N so M=N = 0

and M = N

I dont quite know the "easy" proof. But I know the "hard" one

1.6 The "Determinant Trick" or Cayley-Hamilton theo-
rem, and the proof of Nakayama’s lemma via auto-
morphisms

Theorem 1.3 (Cayley-Hamilton). For for a finitely generated R�module M
and an ideal I. For any � 2 hom(M;M) such that �(M) � IM . There
exists a monic polynomial f with other coefficients in I so that f(�) = 0

We can then prove Nakayama by taking � = id so

0 = (idn +
X

aiid
i)m = (1 +

X
ai)m

So we let r = 1 +
P

ai and we’re done.
We can also use this to prove that finite =) integral since we take �y(m) = ym.
�y(R) � (y)R then

0 = (yn +
X

aiy
i)1

So y is integral

1.7 Spec of a ring, its Zariski topology and principal open
sets

We define the spectrum of a ring

specR = fp � Rjp is a prime ideal g

3



With the topology that a subset U is closed if and only if U = V (I) for some
ideal I where

V (I) = fp 2 specRjI � pg
Now for this topology we can define on X = specR the principal open sets
Xf = X n V (f). These base the topology since

U = X n V (I) = X n V ((f� 2 I)) = X n
\
�

V (f�) =
[
�

Xf�

And so specR is compact since for any open cover this is a union of principal
open sets and

X =
[
�

Xf� = X n
\
�

V (f�) = X n V ((f�))

So V ((f�)) = ? () (f�) = R () 1 2 (f�) and since 1 must be a finite sum
of the f� we need only look at this finite set ffig. Then for each fi we choose
some open set containing Xfi then this gives us a finite subcover.

1.8 Noetherian and Artinian conditions on rings and mod-
ules

We say that a module is Noetherian if it satisfies the ascending chain condition.
That is to say for an ascending chain of submodules

I0 � I1 � :::

There is some n so that Im = In for all m � n.
Similarly we say that a module is Artinian if for a descending chain of submod-
ules

I0 � I1 � :::

There is some n so that Im = In for all m � n.

1.9 Finite length modules and Jordan-Hoelder sequences,
length optional: proof that length is well defined and
additive in s.e.s.

We define the length of a module M to be the largest n so that there is a chain
of submodules

0 = I0 ( ::: ( In = M

If for each k, Ik is a maximal submodule of Ik+1 we say that this is a compo-
sition series. Note that this means that Ik+1=Ik is simple so is isomorphic to
some A=p for p 2 Ass Ik+1=Ik. We say that this is the Dévissage of M
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For R noetherian and M finitely generated we can guarantee the existence of
such a composition series.
To do so we take � to be the set of submodules that do have composition series.
Note that this is nonempty since 0 has a trivial composition series. Since M

is finite over a noetherian ring, M is noetherian so the set � has a maximal
element say N . If M 6= N then M=N 6= 0 so Ass(M=N) 6= ?

THis isn’t empty since we take the ideal p that’s maximal among fannmj0 6=
m 2 Mg which is prime by a standard argument, for ab 2 p; a; b =2 p we have
that for any n (p + (a))n 6= 0; (p + (b))n 6= 0 so (p + (a))(p + (b))n 6= 0 so
(p + ap + bp + ab)n 6= 0 which is a contradiction since this is contained in
p = annm so letting n = m we get a problem

So since annm = p 2 Ass(M=N), N 0=N = mM=N �= A=p � M=N . So by
definition N 0 2 � contradicting maximality of N so N = M and so M has a
composition series.

Since in a composition series we choose Ik maximal in Ik+1 any chain can
be increased in length by making it a composition series, squeeze larger ideals
between these. So the length of a module is the same as the maximal length
of a composition series. And by the Jordan Holder theorem this length is the
same for any composition series so is well defined.

Then for a short exact sequence

0 L M N 0

We have that the alternating sum of the lengths is zero, making this look like a
very good analogy of dimension. This is clear since a chain for L after inclusion,
gives a chain covering the kernel of M ! N , then the rest of the module can
be covered by the preimage of a chain of N meaning `(M) � `(N) + `(L).
Additionally a chain on M M0:::Mn induces a chain on L M0 \ L:::Mn \ L
and on N im(M0 ! N)::: im(Mn ! N). If Li = Li+1 and Ni = Ni+1 then
Mi = Mi+1 so one of the two must be different so `(M) � `(N) + `(L)

1.10 optional: proof that Artinian ring is Noetherian, so
finite length

For an Artinian ring that isn’t Noetherian we take the set of all ideals that arent
finitely generated. By the Artinian assumption we take a minimal element of
this set I�

We claim that for any r 2 R either rI� = I� or rI� = 0. To do so we take the
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map �r(x) : I
� ! rI�. Then letting K be the kernel I�=K �= rI�. If rI� = I�

we’re fine. If not then since rI� ( I� it is finitely generated so K must be in-
finitely generated so K is an ideal below I� thats infinitely generated so K = I�

and rI� = 0.

So if we take r; s =2 ann(I�) then rsI� = sI� = I so sr =2 ann(I�) so p = ann(I�)

is prime so F = R=p is an Artinian domain so a field1 and I� is thus a vector
space over F so since its not finitely generated over R its not finitely generated
over F but any subspace is finitely generated over F since it’s finitely gener-
ated over R. This is not possible so we have a contradiction so R must’ve been
Artinian

1.11 Associated prime, devissage of a module under Noethe-
rian assumptions

See The Jordan-Hoelder section

1.12 Integral closure inside a finite field extension op-
tional: proof of finiteness

For A, a ring thats integrally closed in it’s field of fractions K, then if we have
some finite extension L of K, the integral closure B of A in L is finite

B L

A K = A(0)

finite finite

1.13 Discrete valuation ring DVR

We say that a ring is a Discrete Valuation ring if it is a principal ideal domain
with exactly one nonzero prime (this prime is thus maximal)

1.14 Characterisation of DVRs as 1-dimensional Noethe-
rian local domain that’s integrally closed

Clearly a DV R is local, Noetherian and one dimensional by definition since
theres only one prime and its a PID.

Then if we have a local, 1D, Noetherian domain write K = R(0) and m as
the maximal ideal. By Nakayama m2 6= m so we can find some x 2 m=m2. Since

1The for x 6= 0 the chain (xn) terminates so x
n = rx

n+1 so x
n(rx� 1) = 0 so rx = 1
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R has only 2 primes we see that m is an associated prime of R=xR so there is
some y 2 R so that m = ann(y) then we let a = y=x. So ma � R so a 2 m�1.
But a =2 R so R ( m�1

Note that mm�1 is an ideal of R containing m. If this is equal to m then am � m

so by Cayley-Hamilton a is integral so a 2 R. This is false so mm�1 = R so
m is principal since its prime and invertable. Since R is Noetherian and m is
principal R is a DVR

1.15 optional: Dedekind domain, includes ring of integers
of a number field and affine coordinate ring of non-
singular algebraic curve

A dedikind domain is a ring such that it is integrally closed, noetherain 1D

domain. Or as we’ve just seen this is equivalent to saying that every localisation
is a DV R. For example if we take the ring of integers of a number field this is
one of these allowing us to factor ideals into prime ideals. This also generalises
coordinate rings of nonsingular curves since this is clearly noetherian and 1D

and since its nonsingular its integrally closed. Therefor looking at Dedikind
domains lets us generalise these rings that come up very often.

1.16 Completion, Hensel’s lemma, the Artin-Rees Lemma

For an ideal I � R we define the I�adic completion of a module is the inverse
limit

M̂I = lim �M=(InM)

That is the limit over the natural inverse system x ! x mod In. Put more
concretely, an element of this ring is a sequence (a1; a2; :::) such that ai = ai+1
mod Ii. We say that this is a compatible sequence. Notably this looks like we’re
saying that ai; ai+1 are in some sense "close" modulo I. So if we say that vI(x)
is the largest n so that x 2 In. Then define jxj = 2�vI(x) we can consider these
as cauchy sequences with respect to this "norm", clearly any cauchy sequence is
equivalent to one of these so in some sense its just a topological completion. The
one induced by the norm we have here. We say a ring is I�adically complete if
R �= R̂I . The main reason we care about such rings is they let us solve equations
wayy easier.

Theorem 1.4 (Hensel’s Lemma). Let (R;m; k) be a local ring (k = R=m the
residue field) then if R is m�adically complete.
Let F (x) 2 R[x] be a monic polynomial, and set �F = f 2 k[x]. If f factors
as f = gh where g; h are monic and coprime.
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Then F has a factorisation F = GH where G;H 2 R[x] and

�G = g; �H = h

The proof is done inductively, building up a pair of sequences and then the
product must approach our polynomial.
By assumption we can find such a G1; H1 that reduce to g; h giving us a fac-
torisation in the first term that is to say F �G1H1 =

P
miUi 2 mR[x]. Since

g; h are coprime we write ag + bh = 1 and so (ui = Ui mod m)

gaui + hbui = ui

by adding multiples we can balance this sum such that

gvi + hwi = ui where vi = aui � ch; wi = bui + cg

We choose c so that deg(vi) < deg(h). So since ui; hwi have degree < deg f so
does hwi. Choosing lifts Vi;Wi 2 R[x] we let

G2 = G1 +
X

miWi; H2 = H1 +
X

miVi

Then

F�G2H2 = F�G1H1�
X

mi(G1Vi+H1Wi)�m2
iViWi =

X
�m2

iV1W1 2 m2R[x]

We then just do this inductively to give a sequence of Gi; Hi such that in each
term F �GiHi = 0 so they are equal

To generalise the construction of this space we define for some directed set
of submodules fM�g a topology on M based by the cosets x+M� in this space
it is clear that

1. fM�g base the topology near zero

2. The module operations are continuous

3. If we say M=M� is discrete then the quotient maps are continuous

4. The topology is Hausdorff if and only if
T
M� = 0

The completion is then the completion with respect to this topology so we
take the inverse limit M̂ = lim �M=M�. There is a natural inclusion map
a 7! (a; a; :::). This map has kernel

T
�2�M� so if this is zero we can treat

M � M̂ . We also have natural surjections M ! M=M�, the kernel of which is
the completion of the submodule M� as a subspace. These themselves induce
a topology which is the topology of the completion.

8



Proposition 1.5. 1. For a short exact sequence of inverse systems

0 P Q R 0

We have an exact sequence

0 P̂ Q̂ R̂

2. If also all of the maps in the inverse system �i+1 : Pi+1 ! Pi are
surjective then the sequence

0 P̂ Q̂ R̂ 0

is exact

For the first statement note that the map cP :
Q

i Pi !
Q

i Pi defined by
xi 7! �i+1(xi+1)� xi has kernel exactly P̂ by definition so we just apply the
snake lemma to the diagram

0 0 0

P̂ Q̂ R̂

0
Q

i Pi
Q

iQi

Q
iRi 0

0
Q

i Pi
Q

iQi

Q
iRi 0

cP cQ cR

Note that the snake lemma gives us a longer sequence,

0 P̂ Q̂ R̂ coker(cP )

So if we want a real s.e.s. we just need to show that coker(cP ) is trivial,
that is cP is surjective. If we have that �i are surjective then we just de-
fine x1 = 0; �2(x2) = a1; �i+1(xi+1) = ai + xi, so cP (fxig) = (a1; a2:::) so this
map is surjective.

We cant yet use this to apply to our completion however since we have se-
quences of InN; InM; In(M=N) which dont form exact sequences. However in
the limit they do if we replace them with some system with the same limit, we
do so with the following
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Theorem 1.6 (Artin-Rees Lemma). For A noetherian, I ideal, M finite
module, N �M then there exists c > 0 so that for any n > c

InM \N = In�c(IcM \N)

As a corrolary we also prove that N̂I is, with respect to the subspace topol-
ogy, a subspace of M̂I

1.17 Graded ring, Hilbert series, proof that it is a rational
function

A graded ring is a ring R = �n�0Rn where each Rn is an abelian group and the
multiplication takes Ra�Rb ! Ra+b. We tend to restrict to the case that R0 is
artinian or a field. A graded module is the same and satisfies Ra�Mb !Ma+b

and a graded ideal is an ideal so that I =
P

(I \Rn).

Note that if R is noetherian this is pretty much just a coordinate ring since
R is generated over R0 by finitely many elements so R = R0[x1:::xr]=I where
we say that xi 2 Rdi has weight di, then the weight of any monomial xfaig is
the sum of aidi. Additionally since we assume that R0 is Artinian any finite
module has finite length (`(N) <1).

We define the Hilbert series for a module as

P (M; t) =

1X
n=0

Pn(M)tn where Pn(M) = `R0
(Mn)

This then has the nice consequence that the formal power series is a rational
function where di = weightxi

P (M; t) =
H(M; t)Qr
i=1(1� tdi)

Where H(M; t) 2 Z[t], if we allow M to have negative pieces down to �s we
have the same except H(M; t) 2 Z[t; t�1] with degree down to �s.

If we’re in the nice case where di = 1 then if H is a polynomial of degree
D then for n � D, Pn(M) is a polynomial in n. In this case after we cancel
powers of 1�t we can rewrite this as N(t)=(1�t)d where N(1) 6= 0, So N(t) > 1

and the order of growth of Pn(M) is

N(1) � nd�1

(d� 1)!
+ lot

The number d is then the dimension of the graded ring R. This is also the same
as one plus the order of the pole at t = 1 of P (R; t)
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2 Second Half

I got so bored of the dimension theory I’m doing homological algebra to make
up for it

2.1 General Theorems

We define the ith ext group Exti(A;B) as the ith homology group of the chain
hom(P�; B) where P� is a projective resolution of A. Equivalently this is the
ith cohomology of the chain hom(A; I�) where I� is an injective resolution of
B. Clearly these are the same since we can pass to the dual category to get the
same results. Additionally it is an exercise to show that this is the same for
any projective resolutions, it simply follows from lifting the maps between the
Pi and then this map is a chain homotopy so they induce the same homology.
Ext1 has extra special meaning as it represents the group of extensions of A;B.
By this I mean if we have an exact sequence 0 ! A ! X ! B ! 0 we say
this is an extension of A;B, then composition is understood to be the Baer sum
where you take the pullback over A of X;Y then quotient this by the inclusion
of B.

Theorem 2.1 (Medium Length Exact Sequence in Ext). For a short exact
sequence of R�modules and and R�module A

0 L M N 0

there exists a connecting homomorphism @ such that we have the following
exact sequence

0 hom(A;L) hom(A;M) hom(A;N)

Ext(A;L) Ext(A;M) Ext(A;N)

2.2 General definitions

A module is projective if you can lift through surjections ie

N

P M

9

We also have the following equivalent characterisations

1. P is projective
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2. There exists Q so that P �Q is free

3. The functor hom(P;�) is exact

4. For every R�module N , i � 1 Exti(P;N) = 0

5. For every R�module N , Ext1(P;N) = 0

We can also conclude that

1. For every finitely presented R�module N , Ext1(P;N) = 0

2. For every finitely generated ideal I of R, Ext1(P;R=I) = 0

Additionally most of the time projective is equivalent to free, for example if R
is a PID or is local

We can also consider the formal dual of this, that is injective modules. Sum-
marised in the following

N

I M

9

With alternate characterisations

1. I is injective

2. hom(�; I) is exact

3. For every R�module N , i � 1 Exti(N; I) = 0

4. For every R�module N , Ext1(N; I) = 0

5. For every ideal J � R, Ext1(R=J; I) = 0

Where the last is called Baers criterion this can be translated back into the
diagram as that we only need check the inclusion I ,! R to see injectivity.

2.3 Chapter 5

To do any of this though we really want to actually have resolutions to get our
hands on. Free resolutions are really easy to make. You just take the relations
and then the relations of the relations and etc. We also have this nice theorem

Theorem 2.2 (Hilbert syzergies + Auslander Buchsbaum). Suppose M is a
finite S = k[x1:::xn]�module, then there exists a finite free resolution of the
form
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0 M P0 ::: Pk 0

With k � n. If S;m is a regular local ring of dimension n, and M is a finite
graded S�module of m�depth � d. Then M has a finite free resolution of
length � n� d

I don’t think depth has been defined yet. It can be defined either as the
maximal length of a regular sequence in m on M , where a regular sequence is
a sequence such that each xi+1 is regular on M=(x1; :::; xi)M . Or it can be
defined as the smallest i so that Exti(R=I;M) 6= 0.

We now have this frankly massive lemma that I might simplify but im just
gonna write it out first.

Lemma 2.3. Let R be a ring, x 2 R, and let M be a finite R�module.
Assume that x is a non zerodivisor of M and xM ( M . Additionally
either, (R;m) is local and x 2 m or A;M; x are graded with deg x > 0. We
write �A = A=(x); N = M=xM

1. Generators: Suppose ni generate N , then we can find some lift mi

that generate M

2. Relations: We then define P0 to be the free A�module on this set of
generators and K0 = ker(P0 ! M) as the relations. We then do the
same to make the free �A�module of generators of N with relations
L0. Then K0 ! L0 is surjective. That is we can lift each relation on
N to a relation on M

3. Syzygies: A free resolution Q� ! N can be lifted to a resolution
P� ! M of the same shape. This means that it has the same Betti
numbers, and tin the homogeneous case its graded pieces have the
same degrees

We prove this kind of twice. For the first bit the local case is just Nakayama’s
lemma. Then the graded case we proceed by induction. So for c 2M we write
�(c) =

P
aini then pick bi 2 A with �(bi) = ai then c�P bimi is in ker� so

is dicisibly by x so c �P bimi = xc0 where now c0 is of smaller degree. So we
are now done by induction on the degree.

The meat of the proof then comes from this next bit. We consider the dia-
gram
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0 K0 P0 M 0

0 K0 P0 M 0

0 L0 Q0 N 0

0 0

x x x

Where all of this is just by construction. Since x is M�regular the map x :

M ! M is injective. Applying the snake lemma to rows 2; 3 we get the exact
sequence

P0 M

0 ker(K0 ! L0) ker(P0 ! Q0) ker(M ! N)

coker(K0 ! L0) coker(P0 ! Q0) coker(M ! N) 0

x x

Where since the top map P0 !M is surjective coker(K0 ! L0) = 0 so K0 ! L0
is surjective

The final part just follows from this by applying it to Pi ! Qi inductively

This now lets us prove the syzergies theorem by just taking a regular element,
then we construct this sequence of decreasing dimension so we end up at zero.
If a regular element doesn’t exist we just start after step one so we construct
the free module of generators and take a regular element there.
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