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Introduction

This is a set of notes I’m making based on the book ”Elementary Algebraic
Geometry - Klaus Hulek” I do not claim that the presentation here is particularly
novel or unique

1 Affine Varieties

The Affine space over k, An
k , is basically just kn, like the information it holds is

just that, the new information is the topology you put on it, setting the closed
sets to be varieties.

Definition 1.1 (The Zariski Topology) In the Zariski topology a set is closed
if and only if it is the vanishing of some collection of polynomials, that is

X−closed ⇐⇒ ∃{fi}i∈I : X = {(x1, ..., xn) ∈ kn|fi(x1, ..., xn) = 0 ∀i ∈ I} =: V ({fi}i∈I)

To immediately make this nicer, if f(x) = 0 then g(x)f(x) = 0 and if g(x) = 0
then f(x) + g(x) = 0, that is we can add a bunch of functions to the collec-
tion {fi}i∈I without changing the actual set X, we can add enough functions
to make the ideal generated by the f ′

is. This immediately allows us to restrict
our attention to V (I) where I is some ideal in k[x1...xn]. We can also from
such a set define an ideal of functions that vanish on this set, call this I(X).
This is nice since because k is a field, k[x1...xn] is noetherian so the ideal must
be finitely generated and so we only need to care about a finite collection of
polynomials

This clearly gives a topology as it is easy to check that

Lemma 1.1 1. V (⟨0⟩) = An
k , V (⟨1⟩) = ∅

2. I ⊂ J =⇒ V (J) ⊂ V (I)

3. V (I ∩ J) = V (I) ∪ V (J)

4. V (
∑

λ∈Λ Jλ) =
⋂

λ∈Λ V (Jλ)
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In a topological space a closed set X is called reducible if X = X1 ∪X2 where
X1, X2 are both closed, we can then find that

Lemma 1.2 Let X ̸= ∅ be an algebraic set with corresponding ideal I(X). Then

X is irreducible ⇐⇒ I(X) is prime

Since k is a field, k[x1...xn] is noetherian so An
k is noetherian and using this

we can always find some decomposition X = X1 ∪ ... ∪Xn where X1...Xn are
irreducible for any closed set X

We can now state the first important theorem of algebraic geometry

Theorem 1.3 (Hilbert’s Nullstellensatz) Let k be an algebraically closed
field, and let A = k[x1...xn]. THen t he following hold

1. Every maximal ideal m ⊂ A is of the form

m = ⟨x1 − a1, ..., xn − an⟩ = I(P )

For some point P = (a1...an) ∈ An
k

2. If J ⊊ A is a proper ideal, then V (J) ̸= ∅ [This is the namesake of the
theorem, the existence of zeroes for any proper ideal]

3. For every ideal J ⊂ A we have

I(V (J)) =
√
J V (I(J)) = J

This gives us the correspondence

radical ideals varieties

prime ideals irreducible varieties

maximal ideals points

We can also define one of the most important objects in algebraic geometry.
The coordinate ring

Definition 1.2 (Coordinate Ring) For an algebraic variety V ⊂ An
k we de-

fine the coordinate ring of V as the quotient

k[V ] := k[x1...xn]/I(V )
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This is intuitively just all the (polynomial) functions one can define on an
algebraic variety. For example take the circle V (x2 + y2 − 1) then k[V ] will be
all functions on V with the equivalence that two are equal if they differ by a
multiple of x2 + y2− 1 for example x = x+ (x2− 1)(x2 + y2− 1) since when we
evaluate this at any point on the circle, these two functions will give the same
output so are the same function.

By looking at these coordinate rings we find that for any of a certain type
of algebra can be created as the coordinate ring of some variety so we can find
a categorical equivalence

Theorem 1.4 (Categorical equivalence of coordinate rings and varieties)
The functors

F1 : Affine Varieties→ Fintely Generated Reduced k −Algebrasop

V 7→ k[V ]

(f : V →W ) 7→ (F1f : k[W ]→ k[V ], g 7→ g ◦ f)

F2 : Irreducible Affine Varieties→ Fintely Generated k −Algebras That Are Integral Domainsop

V 7→ k[V ]

(f : V →W ) 7→ (F2f : k[W ]→ k[V ], g 7→ g ◦ f)

describe set bijections and more importantly categorical equivalences

Reduced just means that it was formed as the quotient of a radical ideal, alter-
natively that it has no nonzero nilpotents

This lets us look at the functions that are defined globally on the variety, if
however we want more information then it’s nice to look at functions that can
only be defined somewhere, for example we might want to look at the germs of
functions that are defined near a point in order to get information about how
the variety looks locally.

Definition 1.3 (Function Field) The function field of an irreducible variety
V is k(V ) := Frac(k[V ]). The ring of rational functions defined on V

We want to look at where these functions are defined so define

Definition 1.4 (Regular) For f ∈ k(V ) and P ∈ V we say that f is regular
at P if there exists g, h such that f = g/h and h(P ) ̸= 0

Definition 1.5 (Domain of Definition) The domain of definition of f is
then

dom(f) := {P ∈ V |f is regular at P}

In a similar vein to analyse a specific polynomial we can define
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Definition 1.6 (Non vanishing of polynomial) For h ∈ k[V ] we define

Vh := {P ∈ V |h(P ) ̸= 0} = V − V (h)

Is an open set

We can now construct a useful algebraic structure on the variety

Definition 1.7 (Localisation at a point) The local ring of V at a point P
is the ring

OV,P := {f ∈ k(V )|f is regular at P} = k[V ]{h−1|h(P ) ̸= 0} = k[V ]MP

Where the subscript denotes the localisation (localising at a prime ideal p is just
taking all fractions that have denominators not in p) andMp is the maximal ideal
corresponding to the point P , Mp := {f ∈ k[V ]|f(P ) = 0} = I({P}) + I(V ) ⊂
k[V ]

Definition 1.8 (Stalk of the Structure Sheaf on a Variety) For some open
subset U ⊂ V we define

O(U) := OV (U) := {f ∈ k[V ]|f is regular on U}

The collection of all of these along with natural restrictions of corresponding
functions gives us a Sheaf on V called the structure sheaf OV we can now state
a useful theorem

Theorem 1.5 (Domains) 1. dom(f) is open and dense

2. O(V ) = k[V ] that is, the only everywhere regular functions are polynomials

3. O(Vh) = k[V ][h−1] =: k[V ]h that is, if f is regular wherever h is nonzero
then f = g/hm

We now have these rational functions but they’re more just algebraic objects,
how do we see them as functions since theyre not defined everywhere?

Definition 1.9 (Rational Maps) 1. A rational map f : V 99K An
k is a

tuple of rational functions f = (f1, ..., fn), fi ∈ k(V ). A map is regular
at P if all fi are regular at P and the domain of definition is dom(f) =⋂n

i=1 dom(fi)

2. For an affine variety W ∈ An
k a rational map f : V 99K W is a rational

map f : V 99K An
k such that f(dom(f)) ⊂W

We want to compose these functions, this may not be possible as for example
x → (x, 0) and (x, y) → x/y will have a composition that isn’t defined any-
where so we want to look at maps such that the composition is always defined
somewhere

Definition 1.10 (Dominant) A rational map f : V 99K W is dominant if
f(dom(f)) is a dense subset of W
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With this if f is dominant and if g is some rational map the map g ◦ f is
at least defined on D = f−1(dom(g)) ∩ dom(f) which cant be empty as U =
dom(g) ∩ f(dom(f)) is the intersection of two open dense sets and so is open
and dense itself so is a non empty subset of f(dom(f)) so D = f−1(U) is non
empty

We since rational maps look like the fractional version of maps between va-
rieties we want to look at the fractional version of maps between coordinate
rings. We can easily define

Ff : k[W ]→ k(V )

By taking the same morphism as before, just replacing our variables with the
functions, Ff : g → g ◦ f however if h ∈ ker(Ff) then Ff(g/h) has no meaning
so Ff cannot be a homomorphism k(W )→ k(V ) for some g ∈ K[W ] we have

g ∈ ker(Ff) ⇐⇒ f(dom(f)) ⊂ V (g)

But if f(dom(f)) is dense it cannot be contained in a proper closed subset of
W (since it then cannot intersect V − V (g) making it not dense) so V (g) = W
so g = 0 so

f is dominant ⇐⇒ Ff : k[W ]→ k(V ) is injective

So any dominant map can be extended to a homomorphism k(W )→ k(V )

Theorem 1.6 (Rational maps) 1. A dominant rational map f : V 99K W
defined a field homomorphism Ff : k(W )→ k(V )

2. Conversely, a k-homomorphism φ : k(W )→ k(V ) comes from a uniquely
defined dominant rationa map f : V 99K W

3. If f , g are dominant then F (g ◦ f) = Ff ◦ fG

Theorem 1.7 (Rational maps) The functor

F : Affine Varieties With Dominant Rational Maps→ Function Fieldsop

Is a categorical equivalence

Definition 1.11 (Quasi-affine variety) A Quasi-affine variety is an open sub-
set of an affine variety

We can now construct the category of Quasi-affine varieties

Definition 1.12 (Category of Quasi-affine varieties) The objects are Quasi-
affine varieties and the morphisms f : V ⊃ U1 → U2 ⊂ W are rational maps
f : V 99K W such that f(U1) ⊆ U2 and U1 ⊆ dom(f)

In this category for example, Vf
∼= V where k[V ] = k[Vf ]

One last thing we can define is an idea of an abstract affine variety,
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Definition 1.13 (Abstract affine variety) An abstract affine variety over a
field k is a pair (V, k[V ]) consisting of a set V and a k-algebra k[V ] of functions
on V such that k[V ] is generated by finitely many elements x1...xn over k and
the map

V → An
k

P → (x1(P ), ..., xn(P ))

Defines a bijection between V and a closed subset of An
k

This concludes Chapter 1 (I neglected to include some commutative algebra as
well as Noether normalisation as i will bring that up when it comes to defining
dimension of a variety)
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2 Projective Varieties

Projective space is like normal space but weirder. Pn
k is essentially the space of

lines through the origin.

Definition 2.1 We define the projective space of dimension n as

Pn
k := (An+1

k − {0})/ ∼

Where ∼ is the equivalence relation given by

x ∼ y ⇐⇒ kx = ky

Note that k is the base field so kx refers to the span of x

To visualise this we can imagine taking some n-dimensional hyperplane in An+1
k ,

say {x1 = 1} then this will intersect ”most” of the lines through the origin, each
point on this hyperplane corresponds to a unique element of Pn

k , we just miss
all of the lines that lie parallel to the hyperplane but since the hyperplane is
just a copy of An

k , so is the plane perpendicular, so the lines we miss will just
be all of the lines that lie in An

k so a copy of Pn−1
k

Pn
k = An

k ⊔ Pn−1
k

For any point x ∈ Pn
k we write x = (x0 : x1 : ... : xn) where x is the image of

(x0, x1, ..., xn) under the quotient map. Note that since 0 is excluded from Pn
k

we can cover Pn
k by ensuring each of the coordinates is non zero

Pn
k = U0 ∪ U1 ∪ ... ∪ Un

Where each Ui = {(x0 : ... : xn) ∈ Pn
k |xi ̸= 0} is isomorphic to An

k since we can
scale such that xi = 1 and then the rest of the variables are free.

Now we have an idea of the geometry of Pn
k we better find some geometric

objects. The issue is that, for example, if we try to take C = V (x2 − y) in Pn
k1

(where char(k) ̸= 2) then (1 : 1) ∈ C since 12 − 1 = 0 but (1 : 1) = (2 : 2) /∈ C
since 22 − 2 = 2 ̸= 0. To remedy this we look at what are called homogeneous
polynomials, where the degree of each term is the same.

Definition 2.2 (Homogeneous polynomial) We say that f ∈ k[x0...xm] is
homogeneous of degree n if

f =

ℓ∑
i=0

aix
ui

Where we use multi degree notation, and for every i, ui ∈ Nm+1 its sum of
entries is =: |ui| = n

This solves our issue as if f(x) = 0 then f(λx) =
∑ℓ

i=0 ai(λx)
ui = λn

∑ℓ
i=0 aix

ui =
λnf(x) = 0
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This may feel like an annoying restriction but we lost no information from
the An

k case since for any polynomial

k[x1...xn] ∋ f =

ℓ∑
i=0

aix
ui

We can homogenise it by adding a variable to each of the terms to make the
degrees match, letting v = max |ui| we can construct the homogeneous polyno-
mial

k[x0, x1...xn] ∋ f =

ℓ∑
i=0

aix
v−|ui|
0 xui

Where when we look at the restriction to just U0 we get back our original poly-
nomial with a corresponding variety in An

k . Before we define varieties in Pn
k

however we don’t just want to look at individual polynomials, we want to look
at ideals.

Clearly we cant just look at the zero locus of an ideal generated by homo-
geneous polynomials since x2 − y ∈ ⟨x2, y⟩ and we’ve already concluded that
that polynomial is a pain when we’re in projective space. So we first take some
generality,

Definition 2.3 (Graded Ring) R is a graded ring if R =
⊕

d≥0 Rd where
each Rd is an abelian group and Ra · Rb ⊆ Ra+b, Rc ∩ Rd = {0} for c ̸= d, an
element of Rd is called a homogeneous element of degree d

The important example we care about here is the polynomial ring, which is a
direct sum of the groups of polynomials of degree d

k[x0, ..., xn] =
⊕
d≥0

kd[x0...xn]

Definition 2.4 (Homogeneous Ideal) A homogeneous ideal is then an ideal
of R that can be written as

I =
⊕
d≥0

(I ∩Rd)

That is, I is generated by its homogeneous elements.

We can now construct the projective variety.

Definition 2.5 If I ⊂ k[x0...xn] is a homogeneous ideal. The projective variety
of I is

V(I) := {(y0 : y1 : ... : yn) ∈ Pn
k |f(y0, y1, ..., yn) = 0 ∀f ∈ I ∩ kd[x0...xn] ∀d}

That is, for any homogeneous polynomial in the ideal, it evaluates to zero at this
point
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Much of the standard algebra holds over these varieties, for example by defining

Definition 2.6 (Projective ideal of a set) The homogenous ideal of a set
X ⊂ Pn

k is the ideal

I(X) = ⟨f ∈ kd[x0...xn] | f(y0, ..., yn) = 0 ∀(y0 : ... : yn) ∈ X, d ∈ N⟩

And using that Pn
k is a quotiented version of An+1

k we can turn it back giving

Definition 2.7 For a homogenous ideal I, V (I) = π−1(V(I)) ∪ {0} is called
the projective cone of V(I)

Allowing us to apply affine results to the projective case.

Theorem 2.1 (Projective Nullstellensatz) Let k be an algebraically closed
field. Then for a homogeneous ideal J we have

1. V(J) = ∅ ⇐⇒
√
J ⊃ ⟨x0...xn⟩ This is called ”The Irrelevant Ideal”

2. If V(J) ̸= 0 then I(V(J)) =
√
J

Giving the correspondance Finally we can justify that we lose nothing when

Proper Hom-Radical Ideals Projective Varieties

Proper Hom-Prime Ideals Irred-Projective Varieties

going to the projective case as going back to the covering Pn
k = U0 ∪ ... ∪ Un

Theorem 2.2 (The cover really is affine) The map

ji : Ui → An
k

(x0 : ... : xi : ... : xn) 7→ (x0/xi, ..., xi−1/xi, xi+1/xi, ..., xn/xi)

Is a homeomorphism

So any information about the varieties in An
k can be gleamed from its ho-

mogenised version in Pn
k by just looking at the restriction to U0. Additionally

by considering the covering Pn
k = U0 ⊔ Pn−1

k we have

Theorem 2.3 (Bijection of projective and affine) The map Pn
k ⊃ X 7→

j0(X ∩ U0) ⊂ An
k gives a bijection

{Irreducible projective varieties X with X ̸⊂ {x0 = 0}} ←→ {Irreducible affine varieties}

We can now talk about the second part of the theory of affine varieties, ra-
tional maps and function fields. This isn’t immediately clear as for some ho-
mogeneous polynomials f, g if they have differing degrees then f(λx)/g(λx) =
λm−nf(x)/g(x) so f/g is only a function on Pn

k if the degrees of f and g match
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Definition 2.8 The function field of a projective variety V is defined as

k(V ) =

{
f

g

∣∣ f, g ∈ kd[x0...xn] d ∈ N
}

where f/g = f ′/g′ iff fg′ − gf ′ ∈ I(V )

Lemma 2.4 If we do the standard cover of Pn
k = U0 ∪ ... ∪ Un we can cover a

variety V = V0 ∪ ... ∪ Vn then,

k(V ) ∼= k(V0)

Thanks to our work this really does represent the ring of functions defined on
(some open subset of) the variety, we would also like a coordinate ring that
dispite not being functions still affords use in theory

Definition 2.9 (Homogeneous coordinate ring) For some projective varitey
V with affine cone V α we define the homogeneous coordinate ring of V

S(V ) := k[V α] := k[x0, ..., xn]/I(V )

Which is a graded ring since

S(v) =
⊕
d≥0

Sd(V )

Where

Sd(V ) := {f ∈ S(V )|f is homogeneous with deg f = d} ∪ {0}

Additionally
k(V ) ∼= S(V )(⟨0⟩)

Where we will define this notion now

If we want to take a localisation of a graded ring without losing the graded
aspect, first note that for f, g homogeneous polynomials the degree of f/g ∈ ST

(which is clearly just deg f −deg g) is well defined since for f ′/g′ = f/g we have
that for some h h(f ′g− fg′) = 0 and so hf ′g = hfg′ so deg h+deg f ′+deg g =
deg h+ deg f + deg g so deg f − deg g = deg f ′ − deg g′

Definition 2.10 (Localisation of Graded ring) For a multiplicatively closed
system T

R(T ) :=

{
f

g
∈ RT |

f

g
is homogeneous of degree 0

}
For a prime ideal p we define Tp := {f ∈ R|f is homogeneous, f /∈ p}

R(p) := R(Tp)

If R is an integral domain then for f ∈ R we define Tf = {fn|n ∈ N}

R(f) := R(Tf )
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To finish these kinds of constructions we consinder regularity for functions

Definition 2.11 (All the boring bits) f is regular at P if there are some
g, h such that f = g/h h(P ) ̸= 0 (h isn’t a function on V but it equaling zero is
okay since if one representation of a point evaluates to zero, all representations
do)

dom f is defined as all the points P such that f is regular at P

MP is defined as {f ∈ S(V )|f homogeneous f(P ) = 0}

OV,P := {f ∈ k(V )|f is regular at P} ∼= S(V )MP

This local ring has corresponding maximal ideal mV,P := {f ∈ OV,P |f(P ) = 0}

For a quasi projective variety U ⊂ V the ring of regular functions on U is
defined by O(U) := {f ∈ k(V )|U ⊂ dom f} =

⋂
P∈U OV,P Giving us some sort

of structure sheaf on a variety.

The following theorem is almost cool, until you realise its just saying that if f/g
is regular everywhere then g kinda has to be a constant function and the only
way for this to have degree zero is if f is also constant

Theorem 2.5 If V is an irreducible projective variety defined over an alge-
braically closed field k, then every regular function on V is constant, O(V ) ∼= k

The proof requires some module theory that i assume you already know.
Im now quickly going to redefine all the obvious statements about rational maps,
gimme a sec

Definition 2.12 (Rational maps) A rational map f : V 99K Pn
k is a tuple

(f0 : ... : fn) of rational functions fi ∈ k(V )

A rational map is regular at P if each fi is regular at P and for at least one i
fi(P ) ̸= 0

We can have rational maps between varieties given by f : V 99K W if f :
V 99K Pn

k and f(dom f) ⊂W

For quazi projctive or affine varieties we have morphisms f : U1 → U2 if
f : V ⊃ U1 99K U2 ⊂W where U1 ⊂ dom f and f(dom f) ⊂ U2

For example the homeomorphism we defined earlier is an isomorphism of quazi
varieties

Definition 2.13 (V,W irreducable quazi varieties) We say that f : V 99K W
is a birational equivalence is there is some rational map g : W 99K V such that
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f ◦ g = idW , g ◦ f = idV where this equality is understood to mean equality on
an open dense subset as these maps may not be defined everywhere. We then
say that V,W are birationally equivalent

Theorem 2.6 The following are equivalent

1. f is birational

2. f is dominant and Ff : k(W )→ k(V ) is an isomorphism

3. There are open sets V0 ⊂ V,W0 ⊂W such that the restriction f |V0 : V0 →
W0 is an isomorphism

In addition to this we have that

Theorem 2.7 For L/K a finitely generated field extension which is not finite,
where charK = 0. Then we may find a quasi projective variety V such that the
field extension K(V )/K ∼= L/K

Theorem 2.8 There is a contrapositive equivalence of categories

F : Irred Quasi Proj Varieties w rational maps→ f − g field extentions of kop
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