
Vector Bundles

Kyle Thompson

May 2023

Contents

1 Sheaves 2

2 Modules as Sheaves 6

3 Vector Bundles 8

4 Vector Bundles as Sheaves 9

5 Modules as Vector bundles 10

6 Some Geometry 12

1



1 Sheaves

If we aspire for full generality we would want to talk about Grothendieck topolo-
gies and presheaves, luckily we don’t, we can just do the easy version.

Definition 1.1 (Presheaf of Rings). If we have a topological space X we let �X
denote its poset of open sets. Then a presheaf of rings is a functor O : �

op
X !

Ring where we call the image of the morphism U � V , resV;U .

For such a presheaf to be called a sheaf it must satisfy the additional gluing
criterion

Definition 1.2 (Sheaf of rings). A presheaf O is a sheaf if for any f jU 2

O(U); f jV 2 O(V ) such that resU;U\V (f jU ) = resV;U\V (f jV ) there is a unique
f 2 O(U [ V ) such that resU[V;U = f jU and resU[V;V = f jV

The prototypical example of a sheaf is that of a collection of functions (often
we just consider sheaves of sets but as far as I care it’s always sheaves of rings).
For example one might want to look at a space by considering the set of functions
from this space to one we know better. For example in differential geometry the
natural sheaf to consider for a manifold is all of the smooth functions M ! R

where the induced maps really are just restrictions

OM (U) = ff : U ! R : f is smoothg

Note that since R is just a lovely lovely space this is in fact a sheaf of rings since
there’s a natural way to add, subtract and multiply functions to R. In fact this
sheaf is so nice one may use it as the definition of a manifold. Although to do
that definition justice we need to do a little more work.

When looking at manifolds we often want to find out properties at certain
points, tangent spaces for example. To do so we want to know what functions
there are "at a point". We can all agree that the functions x ! x; x ! x2 are
demonstrably different, even if you’re stuck at the point 0 since looking to your
sides you see that these functions diverge away from each other. If we want
to look at the derivative for example we really only care about what 0 "sees".
In differential geometry we would call these Germs of functions. We generalise
this with the notion of a stalk.

Definition 1.3 (Stalk at a point). For a sheaf OX we define the Stalk at x 2 X,
OX;x = Ox as the set

Ox =
G
U3x

O(U)= �

Where f 2 U � g 2 V if there is some N � U \ V such that resU;N (f) =

resV;N (f). The ring operations are then defined on the largest neighborhood
where the two objects are defined
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This definition is a bit of a set theoretic mess, what we’re really describing
though is just the colimit over the full subcategory of neighborhoods of x.

Ox = lim
�!
U3x

O(U)

(Since this happens to be a directed poset it somewhat more descriptive to use
a direct limit instead of the more general colimit)

Definition 1.4 (Ringed Space). A ringed space is a pair (X;OX) of a space
and a sheaf on the space

Now the following definition I kinda hate. Since this ringed space is assigning
a ring to each neighborhood of the space it seems like it is already a locally ringed
space. However the word locally ringed really means (locally ring)-ed.

Definition 1.5 (Locally ringed space). A locally ringed space is a ringed space
(X;OX) such that at each point, the stalk Ox is a local ring. That is to say it
has a unique maximal ideal mx

I’m realising this is a bit of a diversion from the point of this document
but I just want to get this all down. I promise we’ll get to that definition of a
manifold soon. To do so we do however need to develop the correct categories
for these ringed spaces.

Definition 1.6 (Morphism of Ringed Spaces). For ringed spaces (X;OX),
(Y;OY ) a morphism of ringed spaces F : (X;OX) ! (Y;OY ) is a pair of maps
f; f# where f is a continuous map f : X ! Y and f# is a map of sheaves
f# : OY ! f�OX . Note the backwards ordering and the f�. This is essentially
just a consequence of the maps needing to type-check

Definition 1.7 (Morphism of Locally Ringed Spaces). For locally ringed spaces
(X;OX); (Y;OY ) a morphism of locally ringed spaces F : (X;OX)! (Y;OY ) is
a morphism of ringed spaces such that the induced map of stalks f#x : Of(x) !

Ox is a local ring map, that is to say f
#
x (mf(x)) � mx

This was kinda pointless but useful since for now we’re just going to be
talking about isomorphisms and any isomorphism is automatically a local ring
map. We’re almost there don’t worry

For future reference I think its worthwhile to spend some time explaining
the induced map a bit better we can define it by doing the obvious thing to
the representatives of equivalence classes but since it comes up a lot, it’s worth
diving into the abstract nonsense. If we have a map of ringed spaces f : X ! Y

we have a family of maps f#(U) : OY (U) ! OX(f
�1(U)) that agree with the

restriction maps. This means that these maps form a natural transformation
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�X

�Y Ringop

OX

OY

U 7!f�1(U)

f#

So we say that f# is a natural transformation OY ! OX � f�1. By restricting
�Y to the smaller category �f(x)Y of open sets over f(x). For any open set U over
f(x), f�1(U) will be an open set over x so we can restrict �x to the category
�xX giving the diagram

�xX

�
f(x)
Y Ringop

OX

OY

f�1

f#

We then define the stalk OY;f(x) as the colimit of this functor OY . That is we
have a natural transformation resf(x) : OY ! �OY;f(x) such that any natural
transformation OY ! �a factors through resf(x). We also define OX;x as
the colimit of this OX . By precomposing with f�1, in the diagram category
[�

op

Y;f(x);Ring] we have the following diagram

OY OX � f�1

�OY;f(x) �OX;x

resf(x)

f#

resxj
OX

�
f�1
�
�
f(x)

Y

��

Where we’ve restricted the resx to the image of this new functor, since resx
refers to a family of maps in Ring restricting to a smaller image still gives us a
natural transformation. Since the map resf(x) is the universal cone and we have
another cone resxjOX(f�1(�

f(x)

Y
))
� f# this map factors uniquely as g � resf(x) so

we define the map of stalks to be g(Y ) : OY;f(x) ! OX;x

Definition 1.8 (Local isomorphism). We say that a (locally) ringed space
(X;OX) is locally isomorphic to some other (locally) ringed space (Y;OY ) if
for every point x 2 X there is an open neighborhood U of x such that there is
an isomorphism of ringed spaces, (U;OX jU )! (Y;OY )

Ok we’re here

Definition 1.9 (Manifold). An n�dimensional smooth manifold is a locally
ringed space (M;OM ) that’s locally isomorphic to (Rn;ORn) where ORn is the
natural sheaf of C1 functions Rn ! R
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The other main object studied in Geometry is the scheme, we start with the
easy ones

Definition 1.10 (Affine Scheme). An Affine Scheme is the locally ringed space
(specA;OspecA) where specA is the spectrum of A with its Zariski topology
and OspecA assigns to an open set

OspecA(U) =

8<
:s : specA!

G
p2specA

Ap : s(p) 2 Ap and LAF

9=
;

LAF : 8p;there is an open neighborhood U where, for fixed a; b; s(q) = a
b
for any

q in this neigborhood

This is essentially designed so that Op = Ap, and later we will define module
sheaves such that ~Mp = Mp. In fact, the definition here that looks a little odd
is exactly the definition we get by running Op = Ap;O(Xf ) = Af through the
construction we will later do on modules, so it’s not just plucked out of the sky

Definition 1.11 (Scheme). A scheme is a locally ringed space, locally isomor-
phic to an Affine Scheme

Once we have a locally ringed space, it seems silly to try to put more rings
on this so when we study these spaces we adjoin some other sheaf to it, the
most common is a thing called a sheaf of OX�modules

Definition 1.12 (Sheaf of OX�modules). For a ringed space (X;OX) a sheaf
of OX�modules is a sheaf F of abelian groups such that for every open set
U , F(U) is an OX(U)�module where the restriction maps are also module
homomorphisms. We then say we have a morphism of sheaves ofOX�modules if
we have morphism of sheaves of abelian groups where all group homomorphisms
are also module homomorphisms
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2 Modules as Sheaves

If we have some affine scheme X = specA we have the Zariski topology on it,
that is the topology based by Xf where Xf = V (f)c are called principal open
sets. In the case of polynomial rings this corresponds to Xf = ff 6= 0g.

Recalling from before what we want for a sheaf associated to a module,
calling the (pre)sheaf associated to M , M we wanted Mp

�= Mp but Mp
�=

M 
Ap and M 
Ap
�= M 
Op so a reasonable thing to try would be to define

M(U) = M 
 OX(U) however this has a slight problem, it’s not a sheaf. To
make it a sheaf we want to do something called the sheafification of a presheaf
and to find this object with such a wonderful name we’re going to take the scenic
route. Sheaves are designed as algebraic structures that capture the personality
of "functions to a space" so naturally if we have a set of functions to a space
it’s going to form a sheaf.

So what we want to do is make a space so that the functions on U look
roughly like M 
 OX(U). To do this we construct what is called the espace
etale for a sheaf, in fact initially sheaves were defined as just spaces over another
where the projection was locally a homomorphism, then one would look at the
sections to get what we now call the sheaf. So lets start, we have our scheme X
or better yet, we have our locally ringed space (X;OX) where OX(X) = A then
we want to find a space over X, i.e. a space E and a projection map � : E ! X.
Looking at this space we see that the stalks are a lot like just the preimages
��1(x) so1 we want the space to contain all of these and they then map down
onto x, so as a set we define, calling our presheaf F for now

Spe(M) =
G
x2X

Fx

We now want the sections of this space to be the sections of F , to do this
we can kind of cheat, now we have the space we can turn each s 2 F(U)

into a section on the space by mapping x ! sx and then taking the strongest
topology such that these are our sections. Now taking ~F(U) to be the module2

fs : X ! Spe(F)js is a continuous sectiong. This clearly maintains the local
propertys of the presheaf it just adds in the correct maps to allow for gluing

Definition 2.1 (Sheafification). For a presheaf F on X we define the sheafifi-
cation of F (also called the sheaf associated to F) as the sheaf

~F(U) = fs : X ! Spe(F)js is a continuous sectiong
1in the case of a discrete setup all sections are locally constant so the elements of the

preimage are exactly the stalk
2since the s(x) 2 Fx is a module we can add and scalar multiply the functions making the

set of sections a module
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This leads to the construction

Definition 2.2 (Sheaf associated to a Module). Given a locally ringed space
(X;OX). Letting A = OX(X) and taking an A�module M we define the sheaf
of OX modules associated to M as

~M(U) =

8<
:s : specA!

G
p2specA

Mp : s(p) 2Mp and LAF

9=
;

With the natural restriction maps

Note that ~M(Xf ) = Mf , we could’ve instead taken this as a starting point
but I feel that this construction is more general

As an example if we consider the ring A = k[x] we can look at a simpler
case since specA � A1

k. If we then consider some toy module such as M =

k[x]=(x) �= k we can see that if we have some open set Xf not containing zero
then f(0) = 0 so

~M(Xf ) = Mf = M [f�1] = M [0�1] = 0

However if the set does contain zero then suddenly we get some stuff since
f(0) = a 6= 0

~M(Xf ) = Mf = M [f�1] = M [a�1] = M = k

This is called a skyscraper sheaf since it jumps suddenly at one point and is
zero everywhere

x = 0

k
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3 Vector Bundles

For a manifold we have certain ways to make new manifolds from old, one
way of doing so, where we can make shapes such as the Möbuius band, is by
constructing vector bundles. Essentially we can attach a vector space to each
point in the manifold in a way such that it’s locally very well behaved (locally
its just a product we say this is is the property of being locally trivial). Taking
the standard definition for manifolds based on charts we define,

Definition 3.1 (Vector Bundle). A vector bundle of rank r on a smooth man-
ifold M is a smooth manifold E with a smooth map

� : E !M

Such that there exists an open cover fUig of M where (Uj ; 'j) are charts with
the property that

1. There is a diffeomorphism fj such that the following commutes

��1(Uj) Uj � R
r

Uj

�

fj

�j

2. For p 2 Uj \ Uk, If (p; x) 2 Uj � R
r, (p; y) 2 Uk � R

r then

fj � f
�1
k (p; y) = (p; fjk(p) � x)

Where fjk : Uj \ Uk ! GL(r;R) are smooth

Given such a vector bundle we can construct a sheaf made up of the sections
of this bundle

Definition 3.2 (Section Sheaf). Given a vector bundle (E; �) on M we define
the section sheaf

V(U) = ff : U ! E : � � f(p) = p 8p 2 Ug

Where the restrictions are obvious

By pre-composition we see that this is a sheaf of OM�modules.

Looking at the example of the trivial bundle we take M �Rr then a section
f looks like u! (u; f1(u); :::; fr(u)) where each fi : U ! R, that that is to say
there is a natural identification between sections of this bundle and r�tuples of
elements of OM (U), so V(U) = OM (U)r woah, thats a nice sheaf, in fact, any
vector bundle will be almost as nice! Since vector bundles are locally trivial
locally this will always be true. We say that this sheaf is locally free of rank r.
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4 Vector Bundles as Sheaves

What just happened was we found out that every vector bundle of rank r

corresponds to a locally free sheaf of rank r. Of course we’re only looking at
manifolds right now but that’s fine. It turns out that in any case where the
objects we have have any kind of meaning we see that this is still the case. In
fact the correspondence is so nice that we might aswell take it as a definition

Definition 4.1 (Vector Bundles II). A vector bundle of rank r on a ringed
space (X;OX) is a locally free sheaf of OX�module of rank r

Since if we have a vector bundle, we get a locally free finite rank sheaf. If
instead we start with a locally free sheaf, we want to make a vector bundle,
assuming we’re working over manifolds again3 we take the cover fUig where
F(Ui) �= OM (U)r then we take the space made up of Ui � Rr and we just
need to find out how to glue them together, since we’re on a sheaf gluing is
easy. Taking our isomorphisms fi : F(Ui) ! OM (U)r we restrict to a map
fij = fj jUi\Uj � fij

�1
Ui\Uj

where fij : OM (Ui \ Uj)
r ! OM (Ui \ Uj)

r which is
just some linear map defined on the basis elements so a matrix of functions
Ui \ Uj ! R. So we take our Ui � Rr, Uj � Rr and glue them along the
map (p; x) 7! (p; fij(p) � x) these maps give us the cocycles seen in (2.) in the
definition of a vector bundle over a smooth manifold

3since for a general space we don’t have a notion of what it means to be a vector bundle
this is all we can really do, there is a notion for varieties but manifolds are more intuitive and
the construction is identical
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5 Modules as Vector bundles

This gives us a lovely correspondence between geometry and algebra, since if
we have sufficiently nice modules we can treat them as vector bundles and we
can treat vector bundles entirely sheaf theoretically. For example any finitely
generated projective module will induce a locally free sheaf so we can study
projectives via looking at vector bundles. One of the most important objects
in geometry as a whole is the line bundle, that is a vector bundle of rank 1. A
fun example of such an object is that fractional ideals of a number field K are
just the line bundles over specOK

Theorem 5.1 (Serre-Swan Correspondence). For a commutative Noetherian
ring A, passing a module to its sheaf induces an equivalence of the category
of finitely generated projective A�modules and the category of algebraic
vector bundles over A, that being locally free sheaves of OspecA modules

This in fact also applies for smooth manifolds, in fact there is a general
criterion whether we have this nice correspondence for any locally ringed space.
First we have to do a bit of bookkeeping but it’s worth it I swear. First some
notation, this is taken from [2]

Definition 5.1. 1. We call the category of OX -modules OX �mod

2. We call the full subcategory of locally free OX modules of finite rank
Lfb(X)

3. We call the full subcategory of A �mod consisting of finitely generated
A modules Fgp(A)

Definition 5.2 (Acyclic). We say that a sheaf F is acyclic if all higher sheaf
cohomology groups vanish, these are the groups constructed by the right derived
functor of the global sections functor, by higher we mean Hi(X;F) = 0 for i � 1

Definition 5.3 (Generated by Global Sections). We say that an OX module
is generated by global sections if there is a family of sections fsigi2I in F(X)

such that for each x 2 X, the set of fsixgi2I generate Fx as an Ox �module.
We say that a sheaf is finitley generated by global sections if I is finite

Definition 5.4. Let (X;OX) be a locally ringed space. We say a subcategory
C of OX �mod is called an admissible subcategory if it satisfies the following

1. C is a full abelian subcategory of OX �mod and homOX
(F ;G) are in C

whenever F ;G are in C (homOX
refers to the sheaf of OX morphisms)

2. Every sheaf in C is acyclic and generated by global sections

3. Lfb(X) is a full subcategory of C
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We can now state the most general Serre-Swan criterion I am aware of

Theorem 5.2. Let (X;OX) be a locally ringed space, and let A = OX(X). if
OX�mod contains an admissible subcategory C, and every sheaf in Lfb(X)

is finitely generated by global sections. Then the global sections functor
is a categorical equivalence Lfb(X) ! Fgp(A). We have the Serre-Swan
correspondence for (X;OX)
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6 Some Geometry

Now we are just gonna do some cool algebraic geometry found in the exercises of
Hartshorne [1]. I suppose this is becoming some sort of master doc for alg-geom.

One of the main things you want to look at in geometry and number theory
is finding integer or rational points on curves. This exemplified by

Theorem 6.1 (Fermat’s Last Theorem). The curve xn + yn = 1 has no
rational points for n > 2 other than those with xy = 0

If we have some bog-standard algebraic variety, say R = Z[x;y]
(x2+y2�1) then a

rational point on this variety is a choice of rational x; y such that x2+y2�1 = 0.
I.e. it is a ring morphism R ! Q. Or equivalently it is a morphism of affine
schemes specQ! specR. Where since Q is a single point this morphism is just
picking out a certain point. We can do this for general schemes, if we define
a K�point of a scheme X to be a morphism specK ! X then the data of a
K�point is just some point x 2 X and an inclusion map from the residue field
k(x) = Ox=mx, k(x)! K.

We can prove this quite easily, since the morphism must send the unique
point of specK somewhere that gives us a point, we then just need to define
the corresponding map of sheaves. For some U � X, if x =2 U then the map is
just to the zero ring so we have nothing to do, if x 2 U then we have some map
to K that agrees with restrictions. Since we have a family of such maps this
gives a natural transformation from Ox restricted to sets over x to the constant
functor �K, this is equivalent to giving a morphism f : OX ! K which since
this is just the induced map of stalks it is a local homomorphism so mx must
map to the maximal ideal of K which is zero so this is equivalent to giving a
map OX=mx ! K.

When calculus was first invented mathematicians would use the concept of
an infinitesimal, a number so small that once you square it it’s gone. In algebraic
geometry then there is a nice link between the concept of derivatives and this
new type of number.

We define the dual numbers over a field k as D = k["]="2, our elements
are elements of k with some infinitesimal shift added. This is an algebra over
k so we have a natural inclusion k ! D. This means we have a natural map
spec k["]="2 ! spec k so we can consider this as a scheme over k. If then we
have another scheme over k, call it X. Then we say a k-morphism is a map
between these which agrees with the map onto spec k since k["]="2 has a unique
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prime ideal given by (") any map out of it picks out a point, say x 2 X, passing
then to stalks we see that we have a commutative triangle

spec k["]="2 X k["]="2 Ox

specK k

So Ox=mx
�= k since it must be a subfield of k and must contain k. Additionally

since f#p is a local homomorphism we see that we can induce a map mx=m
2
x !

(")=(")2 �= k so an element of the dual of the cotangent space mx=m
2
x aka the

tangent space. Additionally if x is rational we can define the map sending the
unique ideal to x and given an element of the tangent space � we just want to
construct our map of sheaves, given x =2 U we are mapping to the zero ring so
we are done already, and if x 2 U we see from before that it’s sufficient to find
a map Ox ! k["]="2 by sending a point since Ox=mx

�= k every element can
be written as a + b for a 2 k, b 2 mx, we then send a + b ! a + �(�b)" to get
our sheaf morphism. This is all to say that elements of the tangent space at
k�rational points are just k�morphisms from the dual numbers
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