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1 Baby’s First Constructions

Definition 1.1. An atlas on M compatible with some pseudogroup of trans-
formations1 � on S is a family of pairs f(Ui; 'i : Ui ! S)g such that

1. Each Ui is open and the set of all Ui cover M

2. Each 'i is a homeomorphism onto some open set of S

3. Whenever we have the following diagram

Ui \ Uj

S S

'j
'
�1

i

f

Then f 2 �

We say that an atlas is complete if it isn’t contained in any other atlas compat-
ible with �

This definition is relatively abstract so we’ll limit ourselves to the natural
case of Rn which is what we want to study, spaces that are locally just like Rn

Definition 1.2. A ��manifold is a Hausdorff, second countable topological
space M along with a complete atlas compatible with �

Definition 1.3. A smooth, n�dimensional manifold is a C1(Rn)-manifold

Definition 1.4. We say that f is a morphism or map of manifolds if whenever
f(Ui) � Vi then

1This just means it satisfies natural restrictions, gluings, composition inverses etc, basically
a group thats also a sheaf
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Ui Vj

S S

f

�f

�f 2 �

It is alternatively sufficient that for each Ui there is some Vj where this is
true as all other Vj will be implied by the transition maps being in �

If we have a manifold then since some subsets of Rn are manifolds like the circle
we want to define what it means for some subset to be a manifold so we can
inherit the structure in a natural way

Definition 1.5. For M a manifold of dimension d. A subset Y is a submanifold
of dimension e if at each point y 2 Y there’s a chart (U;') around y such that

'(U \ Y ) = '(U) \ Re 2 Rd

Where Re is embedded in Rd in a natural way
Here we say that Y has codimension c = d� e

Proposition 1.1. Submanifolds are manifolds by just taking all charts that
satisfy the requirement in the definition and restricting them to Y

This definition is annoying to check, luckily its a quick consequence of the
inverse function theorem that for subsets defined by sufficiently nice functions,
they are submanifolds immediately

Proposition 1.2. For a d�dimensional manifold M and Y � M . If for
each y 2 Y there is some chart (Ui; 'i) and smooth functions f1:::fc on
Rn � U 0 �= U ! R such that

Y \ U = fp 2 U jf1(p) = ::: = fc(p) = 0g

And the determinant

det

�
@fi
@xj

(p)

�
6= 0

At each p then Y is a submanifold of codimension c

Proof. We just need to show we can make a choice of coordinates such that
yi = fi(p) then Y \ U will be, with respect to these coordinates, starting with
a bunch of zeros so will be �(U) \ Re. To do so we just need to show that this
satisfies the transition function stuff. We need only check this with the chart
we already have so.

Y \ U Y \ U

Rd Rd

' y
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But this transition function is definitionally (f; id) so we just need to show that
(f; id) is a local diffeomorphism, this is just inverse function theorem since the
jacobian of this is �

Df stuff
0 id

�

So the determinant is nonzero so by the inverse function theorem we are done.

Ok, thats the nice type of manifold, now for the cruel and evil type, quo-
tient manifolds. Taking quotients is a pain because inheriting the nice smooth
structure isn’t really that doable2, see if we take R2=(x � �x) we get the upper
half plane with the two ends of the axis glued together, so we get a sort of
spike in the middle so the natural manifold structure wont be inherited nicely
because its not smooth (although at least in this case the structure does exist
because its topologically just R2 again). We want to restrict our attention then
to sufficiently nice equivalences.

Definition 1.6. G is called a properly discontinuous group of diffeomorphisms
of M if for any two compact subsets K1;K2 �M the set

fg 2 Gjg(K1) \K2 6= ?g

Is finite
We say G has no fixed points if g(x) = x =) g = id

The reason for this definition is that we want for some small enough set K
that every non identity map sends it away from itself so locally K; g(K) are
split apart so we have nothing even nearing a fixed point

Proposition 1.3. For M a manifold and G a properly discontinuous group
of diffeomorphisms the space M=G can be given a natural manifold struc-
ture

Proof. We first show the claim that for any q there is some small enough neigh-
borhood U of q such that gU \ U 6= ? =) g = id.
(Proof of Claim) Since M is second countable take some base of neighborhoods
of q where each is relatively compact3

U1 � U2 � U3 � :::

Then each set Fn = fgUn \ Un 6= 0g is finite by assumption and

F1 � F2 � F3 � :::

2We clearly cant do any quotient like S1=f�1; 1g �= S1 _ S1 so we already want to only
look at those quotients that dont really single out points, that is we want to quotient group
actions

3has compact closure
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If each Fi contains some non identity element gi then by the assumption that
they are finite there must be some id 6= g 2

T
Fi. Meaning

gUm \ Um 6= ? 8m

However, now we can choose xi 2 Ui such that g(xi) 2 Ui. Then since the Ui
base the topology near q, xi ! q and g(xi) ! q so g(q) = q which contradicts
that there are no fixed points
This shows that we can cover M in open sets U such that for g 6= id gU and U

are disjoint, so for p1; p2 2 U , if p1 6= p2 then their orbits must be distinct since
if gp1 = hp2 =) h�1gp1 = p2 =) h�1gp1 2 U =) h�1g = id =) g = h

so gp1 = gp2 so p1 = p2 so the map p! Orb(p) is locally injective so is locally
a homeomorphism onto the image so we can just take the chart maps to be the
local inverse composed with the coordinates on M

M M=G

Rd Rd

phew that was a pain, but not too bad once you get your head around it.
The next section seems to be surgeries but I’m pretty sure we didn’t do that
which is nice.
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2 Baby’s Second Constructions

Tangents!! Whoo!! So, when we’re dealing in R2 the tangent to a curve is a
vector, well more accurately its a pair of numbers T = (a; b). So reeallly its a
function that you give a coordinate system (say the x coordinate) and it tells
you how much the curve is moving in that direction (so you could say that
T (�x) = a; T (�y) = b). On a manifold we don’t have it as nice because there
isn’t a canonical coordinate system, there’s lots and lots of different ones so
instead of representing the tangent to a curve as a simple vector, we need to
tell you how fast its moving with respect to all coordinate systems. We first
classify all coordinate systems

Definition 2.1. We define C1M;p = OM;p the R�algebra of germs of smooth
functions defined near p as the set of pairs (f; U) where f : U ! R is smooth.
We take this algebra modulo agreeing on some neighborhood so (f; U) � (g; V )

if there is some p 2 U 0 � U \ V where f(x) = g(x) for x 2 U 0

If we were to have taken an alternative definition for a manifold at the start
as a locally ringed space (M;OM ) that’s locally isomorphic to (Rn;ORn) then
OM represents the natural structure sheaf where O(U) is the set of smooth
function U ! R and so the stalk at p would be precisely this OM;p. Its perhaps
a decent exercise to explain why this OM;p is a local ring making (M;OM ) a
locally ringed space.

Definition 2.2. For some curve  : [�"; "]!M where (0) = p we define the
tangent vector to the curve at p as the map

X;p : OM;p ! R

Where
X;pf =

df((t))

dt
(0)

We will often omit the ; p part as it usually either doesnt matter or is obvious
as to which tangent we’re talking about

It’s worth convincing yourself that this is the correct notion by using our
example from before that turns (a; b) into T (�x) = a; T (�y) = b

Corollary 2.0.1. This map satisfies the following conditions we’d expect
of a tangent

1. X is R�linear

2. X satisfies the Leibniz rule

X(f � g) = X(f) � g(p) + f(p) �X(g)
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This means that X;p is a derivation at p

Proposition 2.1. The Tangent Space at p, Tp(M). That is the space of
derivations at p that arise as the tangent vector of some curve. Is an
n�dimensional vector space. Stronger even, it has a basis given by�

@

@x1

�
p

; :::;

�
@

@xn

�
p

Where (U;' = (x1; :::; xn)) is some chart at p

Proof. First, to make this make sense we define�
@

@xi

�
p

f = X�i;pf =
d(f � '�1(0:::t:::0))

dt
(0) =

@

@xi
(f � '�1)(0)

Where �i moves along the ith coordinate axis at unit speed then maps up to
M by '. Now for some curve , by the chain rule on Rn

Xf =
d

dt
(f � )(0)

=
d

dt
(f � '�1 � ' � )(0)

=

nX
i=1

�
d

dt
xi � 

�
@

@xi
(f � '�1)(0)

=

nX
i=1

�
d

dt
xi � 

�
(0)

�
@

@xi

�
p

f

So any tangent vector can be written as a sum of these
To show that then any sum of these is a tangent vector we just consider that
for some linear combination X

j

�j

�
@

@xj

�

We can construct the curve xj((t)) = xj(p) + �t then plugging this into the
formula from above gives us what we want

It is known (I’m not sure if by us) that for a smooth manifold Tp(M) is the
space of all derivations

Definition 2.3. A vector field V on a manifold M is an assignement of a
tangent vector to each point p. We say that such a vector field is smooth if
for any smooth function f . V f(p) := V (p)f is a smooth function. We call the
space of smooth vector fields on M X(M)
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This space has some nice properties, by comparing terms on the intersection
we can see that for two overlapping neighborhoods (U�; y1:::yn) and (U�; z

1:::zn)

on the intersection the �(�)k must satisfy

�
(�)
j =

X
k

@yj

@zk
�
(�)
k

Kinda gross but whatever. More interestingly we can give it a lie algebra stru-
cure with a commutator braket

[X;Y ]f = X(Y f)� Y (Xf)

Expanding this we get some second order derivatives that cancel so in order to
ignore wether they exist we just take the definition for

X =
X
j

�j
@

@xj
Y =

X
j

�j
@

@xj

[X;Y ]f =
X
j;k

�
�k
@�j
@xk

� �k
@�j
@xk

�
@f

@xj

Being a commutator then, [�; �] is bilinear and for any X;Y; Z

[[X;Y ]; Z] + [[Z;X]; Y ] + [[Y; Z]; X] = 0

A computation shows that

[fX; gY ] = fg[X;Y ] + f(Xg)Y � g(Y f)X

Definition 2.4. For a smooth map of manifolds f : M ! N we define the
differential

f� : Tp(M)! T(f(p))(N)

as the map that takes a tangent vector X;p to the tangent to the curve f((t))
at f(p). We call this map (f�)p; dfp; Dfp

By looking at local coordinates4 we can check that this f� is just the Jacobian
when f is seen as a map Rn ! Rm�

@fi
@xj

(p)

�

Under our standard basis. Additionally f�(X)g = Xf()g = d
dt
(g � f � ) =

X(g � f)

We now have a big theorem about what f� implies about f
4by all the nice linearity stuff we just need to check that the axis curves work
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Proposition 2.2. For f :M ! N a smooth map

1. If dfp is injective there is local coordinates x1:::xn of p and y1:::ym of
f(p) such that

yi(f(q)) = xi(q) for i = 1; :::; n

Essentially, f is locally just an inclusion map

2. If dfp is surjective there is local coordinates such that

yi(f(q)) = xi(q) for i = 1; :::;m

Essentially, f is locally just a projection map. This means its an
open map.

3. If dfp is bijective then f is locally a diffeomorphism

Proof. 1. If dfp is injective then for a local system of coordinates y1:::ym we
have functions yi � f which are functions on M ! R we want to show
that we can find some of these to define a local coordinate system on M .
By taking some preimages, in terms of some local coordinates w we have
yi � f = fi(w

1; :::; wn) so dfp injective means the matrix�
@fi
@wj

�
(p)

has rank n so we can choose n of these indeces so that the square matrix�
@fij
@wj

�
(p)

Is invertable so by the inverse function theorem yij � f give a local diffeo-
morphism so can be used as coordinates so we’re done.

2. If dfp is surjective then we do basically the same thing, we take this matrix
but now the matrix has rank m so we find an invertable submatrix and
take the coordinates xi = yji � f or xi = wi since we dont care too much
what happens to them

3. 1 + 2 = 3

Definition 2.5. 1. If dfp is always surjective then we say that f is a sub-
mersion

2. If dfp is always injective then we say that f is an immersion of M into N

3. If f is an injective immersion which is a homeomorphism onto its image,
then we call it an embedding
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3 Ok now baby’s doing calculus

We’re gonna start doing things analysts care about ew yuck and look at differ-
ential equations. If we have a vector field V then a curve is an integral curve of
V if, surprise surprise, its derivative is X. That is to say X;(t) = V ((t))

Near any point this is just solving an ODE so we can find a unique curve (t)
that is integral for V for jtj small and (0) = p. In particular we solve the
differential equation

di
dt

= �i(1(t); :::; n(t))

(This is derived by just applying both X and
P

�@x to the ith coordinate
function then this will solve it always by application of the chain rule) To look
at all the solutions at once we introduce

Definition 3.1. A 1�parameter group of diffeomorphisms or a (global) flow
on M is a mapping � : R�M !M . �(t; p) =: �t(p) where

1. For each t, �t is a diffeomorphism

2. For t; s 2 R �t+s = �t � �s

This is essentially a map that flows M along the vector field. This flow
induces curves at each point where you follow them p(t) = �t(p) which thus
induces a vector field V (p) = Xp(t);p for which these  are integral curves.
Sadly this being well defined for all of R is too hard in most cases so we resort
to just being able to flow M a little bit

Definition 3.2. An (")local 1 parameter group of diffeomorphisms is the same
as the last definition but instead of R we have (�"; ") and then (2:) is true
whenever its well defined

This still encapsulates some less nice integral curves and lets us induce a
vector field. In fact any vector field can make one of these by just flowing each
point as far as it will go.

Proposition 3.1. Let V be a vector field on M . Then for each point p 2
M there is an open neighborhood U and an (")local 1-parameter group of
diffeomorphisms �t : U !M inducing V

Additionally if two such groups induce the same vector field, they coincide

Proof. We do as before and construct the integral curves of X starting at p,
say p(t) then we define �t(p) = p(t) thanks to some results about ODEs this
varies smoothly with t; p and are unique. So this gives us what we want. 2:

follows since they both give valid curves so by uniqueness of ODE solutions they
are the same. 1: follows by letting s = �t and perhaps restricting to a smaller
open set if needs be
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If this construction ends up giving us a global 1�parameter group of diffeo-
morhpisms! Cool! If V does this we say that V is complete. "How often can
this happen?" I hear you ask. Well...

Proposition 3.2. On a compact manifold M , every vector field V is com-
plete

Proof. We have open neighborhoods for each point where these work, so we
cover and take a finite subcover, then these all work on some " = minf"ig so
we just repeat after time t = " to extend it to R. If there are any overlaps they
stitch together wonderfully by uniqueness don’t even stress

A good portion of manifolds stuff, like what we just did, is we make some-
thing happen locally then extend it to global property. This next tool gives us
essentially an algorithm to do that.

Theorem 3.3 (Partitions of Unity). Let M be a manifold with an open cover
fU�g�2�. Then there exists functions f�igi2N on M such that.

1. For any p, 0 � �i(p) � 1

2. Each p has a neighborhood on which all but fintely many �i are iden-
tically zero

3. For each i 2 N there is an index �(i) such that Supp �i � U�(i)

4. For each p,
P

i2N �i(p) = 1

Proof. The proof is very long and not enlightening so im not gonna bother to
write it, the cliffnotes are. Obviously you can do this on Rn since we can make
C1 functions with compact support. Then we take a compact exaustion5 of
M which exists by second countable-ness. Then for each step of this exaustion
and for each new p we havent hit. We intersect with some U� 3 p and lift our
function to one on U� this gives us an open cover so only finitely many p are
needed to have this non zero everywehere. And we’re done (we might want to
divide through by something to make it 1 but thats neither here nor there)

We can now prove one of the like, 2 theorems from this module

Definition 3.3. A map of topological spaces is called proper if the preimage
of any compact set is compact

Theorem 3.4 (Ehresmann’s fibration theorem). Let � : M ! I = (a; b)

be a proper submersion of manifolds. Then for any two t1; t2 the fibers
��1(t1); �

�1(t2) are diffeomorphic
5Gi where �Gi compact, �Gi � Gi+1 and M =

S
i
Gi
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Proof. Since � is a submersion it is locally just a projection Rn ! R so choose
coordinates of a neighborhood U(p) around p such that �(x1; :::; xn) = x1 = t.
Consider the vector field @

@t
on I. On each U(p) there is a vector field @

@x1
=:

VU(p) with

d�p
@

@x1
=

@

@t

We then choose a partition of unity f�ig subordinate to fU(p)g so now

W =
X
i

�iVU(�(i))

Defines a vector field on M with the property that

d�pW =
@

@t

Let � : I" � U ! M be the corresponding local 1�parameter group of diffeo-
morphisms around some point p. If �(p) = 06 then since d�pW = @

@t
this � is

unit speed so �(t; p) = pt where �(pt) = t

We now take the largest possible interval where this is defined, if this is ev-
erywhere we are done since �(t0; p) = pt0 so �(pt0) = t0 so p! �(t0; p) defines
a diffeomorphism of fibers with inverse q ! �(�t0; q). We just need to show
that this is defined over all of I

Assume it is not, that is the maximal interval is some (!1; !2) ( I. Wlog
assume that !2 < b then we want to show that we can define some value for
�(!2; p). We have that ��1([0; !2]) is compact in M so if we take some increas-
ing sequence tk ! !2 then �(tk; p) 2 ��1([0; !2]) will have some convergent
subsequence converging to some p0 therefor we can set �(!2; p) = p0 and then
at this point we can extend the flow to some !2 + " contradicting that the in-
terval was maximal. This means that the maximal interval must be the whole
thing so any fiber is diffeomorphic to ��1(0) and we are done.

Essentially the idea is we parameterise a curve such that �(p(t)) = t then
moving along this curve lets us hit everything thanks to R being nice and
ordered and the assumption that � is proper, giving us diffeomorphisms.
That was a pain, luckily its nicer now, because we’re just doing geometry

6We may assume that 0 2 I by just shifting before or after the fact
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4 Baby’s done with calculus, back to construc-
tions

Definition 4.1. We define the dual tangent space, made up of covectors as
Tp(M)� = homR(Tp(M);R)

Definition 4.2. The total differential of a smooth function f at p is the covector
satisfying

dfpX = Xf 8X 2 Tp(M)

This coencides with the induced differential f� where we view f as a map of
manifolds and R �= Tf(p)(R)

Definition 4.3. A (smooth) 1�form ! on M is an assignment of a covector !p
at each point p such that in a neighborhood of p

! =
X
j

fjdx
j

Where
dxj :

@

@xj
! 1;

@

@xi
! 0

And is the total derivative of xj the coordinate function and where fj are smooth

We can now construct the tangent/cotangent bundles

Definition 4.4. We define the tangent/cotangent bundles as

T (M) =
G
p2M

Tp(M) T (M)� =
G
p2M

Tp(M)�

With the natural manifold structure (natural in the sense that these are locally
just the product of M with Rn)

Proof. The general idea for these is we take the natural projection maps

� : Xp 7! p �� : !p 7! p

Then given a chart (U;' = (x1; :::; xn)) on M we construct charts on these
bundles as

(��1(U); ~') (��
�1

(U); ~'�)

Where
'(v) = (x1(�(v)); :::; xn(�(v)); dx1(v); :::; dxn(v))

'�(v) = (x1(��(�)); :::; xn(��(�)); �
@

@x1
; :::; �

@

@xn
)

These maps then imply the natural differential and topological structure, where
these sets base the topology and these charts form the atlas
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These are examples of a more general class of manifold, the vector bundle

Definition 4.5. A vector bundle of rank r on a smooth manifold M is a smooth
manifold E with a smooth map

� : E !M

Such that there exists an open cover fUjg of M where (Uj ; 'j) are charts with
the property that

1. There is a diffeomorphism fj such that the following commutes

��1(Uj) Uj � R
r

Uj

�

fj

�j

2. For p 2 Uj \ Uk, If (p; x) 2 Uj � R
r; (p; y) 2 Uk � R

r then

fj � f
�1
k (p; y) = (p; fjk(p) � x)

Where fjk : Uj \ Uk ! GL(r;R) are smooth

These are interesting objects (see K�theory) with lots of structure

Definition 4.6. 1. We call Ep = ��1(p) the fibre of E over p

2. A morphism of vector bundles f : E ! F is a smooth map of manifolds
that maps fibres Ep ! Fp and such that f restricted to Ep

�= Rn is a
linear map of some constant rank s indpendant of p.

3. A (smooth) section in a vector bundle E over an open subset U is a smooth
map � : U ! E with ��� = idU . In the case of tangent/cotangent bundles
these sections are smooth vector fields/ 1�forms on U

Vector bundles are often constructed from an open cover fUjg smooth func-
tions

fjk : Uj \ Uk ! GL(r;R)

Where (whenever it makes sense to say)

fjk = f�1kj fjj = id fij � fjk = fik

The last condition is called the cocycle condition and a system as just described
is called a GL(r;R)�cocycle on M. Clearly any bundle admits a cocycle, but
interestingly any cocycle will admit a bundle (the cocycle of E will give back E

up to isomorphism)
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Definition 4.7. From a cocycle we construct its vector bundle as follows. We
take

~F =
G
j

Uj � R
r

then impose the equivalence that for p 2 Uk \ Uk, (p; x) � (p; y) () x =

fjk(p)�y then the natural projection maps (p; x)! p induce the smooth/topological
structure as before

We can then define the Whitney direct sum (ooh we’re halfway toK�theory)

Definition 4.8 (Whitney direct sum). The Whitney direct sum of E;F denoted
E � F is the vector bundle of rank r+ s associated to the GL(r+ s;R)-cocycle
with the same cover given by

(f + g)jk(p) =

�
fjk(p) 0

0 gjk(p)

�
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5 Baby is getting bored of constructions is there
any other content we can do please

Ok so nows the algebra section, im just gonna speedrun it because algebra
is easy. We define the tensor product U 
 V as the vector space spanned by
elements u
v with like, the obvious relations that make (u; v)! u
v bilinear.
Its like the "least" information you need to define something bilinear so we have
the alternative classification

Proposition 5.1 (Universal Property of Tensor Product). U 
 V with the
natural map U � V ! U 
 V is the unique vector space such that for any
bilinear h : V � W ! Z there is a unique linear map �h such that the
following commutes

U � V U 
 V

Z
h




�h

Proof. The proof is easy, just find the map and its obviously the only one

Corollary 5.1.1. The following isomorphisms/maps unique

1. U 
 V �= V 
 U

2. k 
 U �= U

3. (U 
 V )
W �= U 
 (V 
W )

4. Maps Ui ! Vi induce maps Ui
 ! Vi


5. (U1 � U2)
 V �= (U1 
 V )� (U1 
 V )

6. We have an obvious basis of U 
 V so dimU dimV = dimU 
 V

7. U 
 V �= hom(U�; V )

8. U� 
 V � �= (U 
 V )�

Proof. These mostly follow trivially from the proposition

Definition 5.1. We define the tensor algebra over a vector space is the free
algebra on a vector space, that is we have a forgetful functor from algebras to
vector spaces, taking its left adjoint gives us a tensor algebra
An alternative representation is T �(V ) =

L
V 
r where V 
r is the r�fold tensor

product. Multiplication is then just given by concatenation

Definition 5.2. We define the exterior algebra as the tensor algebra with anti
symmetry u ^ v = �v ^ u
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Definition 5.3. The exterior r�forms
Vr

V are given by those elements of
degree r its no longer an algebra but who cares

Proposition 5.2. 1. We have the same universal property as before for
when h is alternating, there is a unique h so that

V r
Vr

V

Z

h




�h

2. Applying this to the natural map W r !
Vr

W a map V !W induces
a map ' :

Vr
V !

Vr
W

3. dim
Vr

kn =

�
n

r

�

4. For f : kn ! kn an endomorphism the induced map
Vn

kn !
Vn

kn

is multiplication by det f

5. There is a natural nondegenerate bilinear pairing
Vr

V � �
Vr

V ! K

mapping
(v�1 ^ ::: ^ v

�
r ; w1 ^ ::: ^ wr) 7! det(v�i (wj))

inducing an isomporphism
Vr

V � �= (
Vr

V )�

Proof. These are all immediate from the definitions/natural universal proper-
ties
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6 Getting comfortable? Too bad! More Calcu-
lus!

Definition 6.1. An r�form ! on M is a smooth choice of an element inVr
Tp(M)� to each point. Smooth in the sense that in local coordinates

! =
X

1�i1�:::�ir�n

fi1:::ir (x
1; :::; xr)dxi1 ^ ::: ^ dxir

Where each fi1:::ir is smooth. We call the space of all such forms Ar(M)

Definition 6.2. For f : M ! N the pullback f�! 2 Ar(M) of ! by f is the
natural extension of the map

(f�)
� : Tf(p)(N)� ! Tp(M)�

Which is just the dual map of

f� : Tp(M)! Tf(p)(N)

In local coordinates we define the map by

f�dyi =
X
j

@fi
@xj

dxj = dfi

Which then extends to ! =
P

I ajdy
I (where I is some multiindex)

f�! =
X
I

f�aIdfI

Where f�aI = aI � f and dfI = dfi1 ^ ::: ^ dfir

As I’m sure we’re all category theorists here the following corollary lets us
say that taking the tangent/cotangent space of a pointed manifold gives us a
functor Man� ! V ect or V ectop! Yay! It is at this point I feel morally obligated
to mention that the chain rule is just functoraility of this and I hope from now
on you only refer to the chain rule as functoriality of the derivative to annoy
and confuse all your classmates.

Corollary 6.0.1. 1. f�(!1 + !2) = f�(!1) + f�(!2)

2. f�(! ^ �) = f�! ^ f��

3. (f � h)�! = h�f�!

4. f�(dy1 ^ ::: ^ dyn) = det
�
@fi
@xj

�
dx1 ^ ::: ^ dxn

17



The last one when we let f be the transition map we see

a(y1:::yn)dy1 ^ ::: ^ dyn = a(y1(x):::yn(x)) det

�
@yi
@xj

�
dx1 ^ ::: ^ dxn

Which looks just like the change of variables formula7

Z
a(y1:::yn)dy1 ^ ::: ^ dyn =

Z
a(y1(x):::yn(x))jdet

�
@yi

@xj

�
jdx1 ^ ::: ^ dxn

Definition 6.3. 1. We say that an n�dimensional manifold is orientable if
there exist an everywhere nonvanishing n�form (called a top dimensional
form) ! on it.

2. An orientation on M is a choice of an equivalence class of these forms
where ! � !0 if ! = f!0 for some everywhere positive smooth f .

3. An oriented manifold is a pair (M; [!]) (Clearly there are 2 possible ori-
entations, [!]; [�!])

This definition is however annoyingly technical and doesnt really tell you
much about the structure of the manifold, like when can we actually do this? We
cant for the Möbius band but we can for a normal band? Whats the difference?

Proposition 6.1. A manifold M is orientable if and only if there is a
covering of coordinate charts such that on each intersection

det

�
@yi

@xj

�
> 0

The idea being. We can clearly orient locally, so if whenever we swap to
a new local segment we can choose an orientation that preserves this sign and
stuff, then the other direction should just be that an orientation will swap with
the sign of this so if it doesn’t swap then its positive, lets see how that pans
out.

Proof. If M is orientable, oriented by ! = f(x1; :::; xn)dx
1 ^ ::: ^ dxn where

f > 0 on the overlap we have

g(y1; :::; yn)dy1 ^ ::: ^ dyn = g(y1(x); :::; yn(x)) det

�
@yi

@xj

�
dx1 ^ ::: ^ dxn

= f(x1; :::; xn)dx1 ^ ::: ^ dxn

So since f; g > 0 then the determinant is positive.
If we have such a covering then we take a partition of unity subordinate to this
cover. Then let

! =
X
i

�i(dy
1 ^ ::: ^ dyn)�(i)

7foreshadowing?
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Then on some open set in this cover

! =
X
i

�i det

�
@yi

@xj

�
dx1 ^ ::: ^ dxn

Which is non negative and non vanishing because all �i � 0 and at least one
> 0 and det > 0

We finally now know enough to do integrals! We define the integral for some
oriented manifold and some n�form ! with compact supportZ

M

!

To do so we choose a covering fU�g such as is in the proposition then scale
so on each U� the orientation is equivalent to dy1 ^ ::: ^ dyn then on U� ! =

f(y1; :::; yn)dy1 ^ ::: ^ dyn. Now choosing a partition of unity subordinate to
fU�g we have that on U�

�i! = gi(y
1; :::; yn)dy1 ^ ::: ^ dyn

We now define the integralZ
M

! :=
X
i

�i! :=
X
i

Z
Rn

gi(x1; :::; xn)dx1:::dxn

Whooo!! We did it! Now I know you all know about Stokes’ theorem and dont
worry we’re getting to it. First we need to define a couple more things (I know,
more constructions, who could’ve seen this coming)

Proposition 6.2. Define A(M) = �Ar(M). There is a natural R�linear
map d : A ! A called the exterior derivative such that

1. For an r�form !, d! is an r + 1 form

2. For a smooth function f 2 A0(M) df is what we’ve already defined

3. For an r�form ! and s�form �

d(! ^ �) = d! ^ � + (�1)r! ^ d�

4. d2 = 0

And in coordinates

! =
X
I

fIdx
I =) d! =

X
I

dfI ^ dx
I
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Proof. By applying a partition of unity it’s enough to show that the map we
defined locally satisfies these conditions.

1. This is immediate

2. This too is immediate

3. For ! = fdxI ; � = gdxJ we have since this map satisfies the obvious
linearity etc.

d(! ^ �) = d(fgdxI ^ dxJ)

= d(fg) ^ dxI ^ dxJ

= (fdg + gdf) ^ dxI ^ dxJ

= (�1)rfdxI ^ dg ^ dxJ + df ^ dxI ^ gdxJ

= (�1)r! ^ d� + d! ^ �

4.

d2! =
X
j

@2f

@xk@xj
dxk ^ dxj ^ dxi1 ^ ::: ^ dxir

Now since for each term we add both @2f

@xk@xj
dxk^dxj and @2f

@xk@xj
dxj ^dxk

they all cancel so d2 = 0

We now just need to show that this function is well defined, that is to say that
if we choose different coordinates does it agree? Well we can derive that it has
this form on all coordinate choices just from the properties we now know.

d

 X
I

fIdy
I

!
=
X
I

df ^ dyI +
X
I

fd(dyI)

Where the second term is zero because

d(dy1 ^ ::: ^ dyk) = d2y1 ^ ::: ^ dyk � dy1d(dy2 ^ ::: ^ dyk)

Where the first is zero because d2 = 0 and the second by induction so it is just
the first term nomatter what coordinates we choose

Proposition 6.3. For f a smooth map ! an r�form

d(f�!) = f�(d!)

Proof. For zero forms this is clear since f� satisfies f�(X)(') = X(' � f) so the
dual map satisfies f�(d') = d(' � f) = d(f�')

Now for a general form
! =

X
gIdy

I
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So
f�! =

X
f�(gI)f

�dyI

d(f�!) =
X

d(f�(gI))f
�dyI =

X
f�(d(gI))f

�dyI = f�(d!)

Corollary 6.3.1. 1. For f : R3 ! R df = @f
@x1

dx1 +
@f
@x2

dx2 +
@f
@x3

dx3 =

Grad f

2. For ! = f1dx1 + f2dx2 + f3dx3 then d! = curl f (where the 1st coordi-
nate is dx2 ^ dx3 and so on)

3. For ! a 2 form as a sum of fi, d! = div fdx1 ^ dx2 ^ dx3

4. So curl grad = 0 and div curl = 0 are just d2 = 0

As an interesting note this can be put into a short(ish) exact sequence

0 R C1(R3;R) C1(R3;R3) C1(R3;R3)

C1(R3;R) 0

Grad Curl

Div

Theorem 6.4. For M an oriented n�dimensional manifold if ! 2 An�1(M)

is a differential form with compact support thenZ
M

d! = 0

Ooh starting too looks Stokes’ theoremey now aren’t we

Proof. Choose a covering and paritition of unity � to write

! =
X
i

�i!

Then locally

�i! = f1dx
2 ^ dx3::: ^ dxn � f2dx

1 ^ dx3::: ^ dxn + f3dx
1 ^ dx2::: ^ dxn

So

d(�i!) =

�
@f1
@x1

+ :::+
@fn
@xn

�
dx1 ^ ::: ^ dxn

So now we’re just looking at a sum of integrals of the formZ
Rn

�
@f1
@x1

+ :::+
@fn
@xn

�
dx1:::dxn
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But Z
Rn

@f1
@x1

dx1:::dxn =

Z
R

:::

Z
R

@f1
@x1

dx1:::dxn =

Z
R

:::[f1]
1
�1:::dxn = 0

Since f1 has compact support it is eventuall zero on both ends so the overall
integral is zero

We’re getting so close I can nearly taste it. Although Stokes’ Theorem says
something about boundaries, should probably do something about that

Definition 6.4 (Manifold with boundary). A manifold with boundary is a
manifold but instead of Rn we just replace it with

Hn = f(x1; :::; xn) � R
njxn � 0g

Then the pseudogroup is the same just with C1(Hn) and everything. Its all
fine
We define the boundary of M as

@M = fp 2M j there is some chart where '(p) 2 f(x1:::xn) 2 Rnjxn = 0gg

I refuse to be more rigourous here, perhaps there has not been a concept yet
so intuitive. Although if we want to define integrals on the boundary we need
orientations

Proposition 6.5. If M is an orientable manifold with boundary then @M

is orientable

Proof. If dimM = 1 then @M is points so this is trivial. For dimM � 2.
We can choose a cover such that locally the coordinates on intersections have
positive transfer determinants, we just need to do this on @M we already have
the cover, lets check that the determinant stays positive. At a point on the
boundary we have

yn(x1:::0) = 0

So yn will be zero nomatter how you change x1; :::; xn�1 so our jacobian is

J =

0
BBBBB@

@y1

@x1
::: @y1

@xn�1
@y1

@xn

...
. . . @y1

@xn�1

...
@yn�1

@x1
::: @y1

@xn�1

...
0 ::: 0 @yn

@xn

1
CCCCCA

And since yn must increase as xn increase as they move away from xn = 0

since they can only become postive @yn

@xn
> 0 so since the determinant of J is

positive the top left corner matrix will have positive determinant at xn = 0

so when we restrict these coordinates to xn the charts give transitions with
positive determinant so give an orientation
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Definition 6.5. For an orientable manifold M with orientation ! ' �dx1 ^

:::^dxn for � = �1 we define the induced orientation by (�1)ndx1 ^ :::^dxn�1

Now we’re here, we can do it !! The big one!!

Theorem 6.6 (Stokes’ Theorem). For an oriented manifold with boundary
and ! 2 An�1(M) with compact supportZ

M

d! =

Z
@M

!

Proof. For n = 1 this is just the fundamental theorem of calculus. So for n � 2

Let ! =
P

i �i! and so Z
M

d! =
X
i

Z
M

d(�i!)

Then writing �i! as the annoying alternating sum thing we did earlierZ
M

d(�i!) =

Z
xn�0

�
@f1
@x1

+ :::+
@fn
@xn

�
dx1:::dxn

=

Z
Rn�1

[fn]
1
0 dx1:::dxn�1

= �

Z
Rn�1

f(x1; :::; xn�1; 0)dx1:::dxn�1

=

Z
@M

�i!

Where the last equality is due to that �i! = (�1)n�1fndx
1 ^ ::: ^ dxn�1 and

the induced orientation is (�1)ndx1 ^ ::: ^ dxn�1

Now, to conclude with a nice consequence

Theorem 6.7 (Brouwer’s fixed point theorem). Let B be the closed unit ball
in Rn and f : B ! B a smooth map from B to itself. Then f has a fixed
point, (this theorem can be proven for continuous f by using homology but
this is cool anyway)

Proof. Supposing there is no fixed point, f(x) 6= x, then we take the line
segment f(x) ! x and extend it until it hits the boundary, this induces a
smooth map g : B ! @B that fixes the boundary. Now take some nowhere
vanighing form on @B normalised soZ

@B

! = 1

Then
1 =

Z
@B

! =

Z
@B

g�! =

Z
B

d(g�!) =

Z
B

g�(d!) = 0

Since d! = 0 as it’s a n� 1 form on Sn. This is a neat contradiction so f has
a fixed point
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